5 research outputs found

    A Review on Swarm Intelligence Based Routing Approaches

    Get PDF
    The principles of bio-inspired or swarm intelligence algorithms can be effectively used to achieve optimal solutions in routing for complex and dynamic wireless sensor networks or body area networks. As the name indicates, it is a field that is inspired by natural living beings like ants, bees, fishes, etc. Studies have proved that the routing protocols based on such bio-inspired methods perform better in terms of energy efficiency, reliability, adaptivity, scalability, and robustness. The general classification of routing protocols is classical-based and swarm-based routing protocols, where both the protocols were specifically categorized as data-centric, location-aware, hierarchical and network flow, and QoS aware protocols. In this paper, an evocative taxonomy and comparison of various swarm-based routing algorithms are presented. A brief discussion about the sensor network design and the major factors that influence the routing is also discussed. The comparative analysis of the selected swarm-based protocols is also done with respect to routing characteristics like query based, route selection, energy efficiency, and path selection. From the review, it is observed that the selection of a routing protocol is application dependent. This paper will be helpful to the researchers as a reference on bio-inspired algorithms for new protocol designs and also for the proper selection of routing protocols according to the type of applications

    A Review on Swarm Intelligence Based Routing Approaches

    Get PDF
    The principles of bio-inspired or swarm intelligence algorithms can be effectively used to achieve optimal solutions in routing for complex and dynamic wireless sensor networks or body area networks. As the name indicates, it is a field that is inspired by natural living beings like ants, bees, fishes, etc. Studies have proved that the routing protocols based on such bio-inspired methods perform better in terms of energy efficiency, reliability, adaptivity, scalability, and robustness. The general classification of routing protocols is classical-based and swarm-based routing protocols, where both the protocols were specifically categorized as data-centric, location-aware, hierarchical and network flow, and QoS aware protocols. In this paper, an evocative taxonomy and comparison of various swarm-based routing algorithms are presented. A brief discussion about the sensor network design and the major factors that influence the routing is also discussed. The comparative analysis of the selected swarm-based protocols is also done with respect to routing characteristics like query based, route selection, energy efficiency, and path selection. From the review, it is observed that the selection of a routing protocol is application dependent. This paper will be helpful to the researchers as a reference on bio-inspired algorithms for new protocol designs and also for the proper selection of routing protocols according to the type of applications

    Multi-objective function-based node-disjoint multipath routing for mobile ad hoc networks

    Get PDF
    Funding Information: This work was supported Korea Environmental Industry & Technology Institute (KEITI) grant funded by the Korea government (Ministry of Environment). Project No. RE202101551, the development of IoT-based technology for collecting and managing Big data on environmental hazards and health effects.Peer reviewedPublisher PD

    Fuzzy-Based Dynamic Time Slot Allocation for Wireless Body Area Networks

    No full text
    With the advancement in networking, information and communication technologies, wireless body area networks (WBANs) are becoming more popular in the field of medical and non-medical applications. Real-time patient monitoring applications generate periodic data in a short time period. In the case of life-critical applications, the data may be bursty. Hence the system needs a reliable energy efficient communication technique which has a limited delay. In such cases the fixed time slot assignment in medium access control standards results in low system performance. This paper deals with a dynamic time slot allocation scheme in a fog-assisted network for a real-time remote patient monitoring system. Fog computing is an extended version of the cloud computing paradigm, which is suitable for reliable, delay-sensitive life-critical applications. In addition, to enhance the performance of the network, an energy-efficient minimum cost parent selection algorithm has been proposed for routing data packets. The dynamic time slot allocation uses fuzzy logic with input variables as energy ratio, buffer ratio, and packet arrival rate. Dynamic slot allocation eliminates the time slot wastage, excess delay in the network and attributes a high level of reliability to the network with maximum channel utilization. The efficacy of the proposed scheme is proved in terms of packet delivery ratio, average end to end delay, and average energy consumption when compared with the conventional IEEE 802.15.4 standard and the tele-medicine protocol
    corecore